Matrix Mean Series in Terms of Boundary Orthogonal Systems and Functions in the Classes H^{∞} and E^p

I. Bruj

Grodnaer staatliche Janka-Kupala-Universität, Ażeschkistr. 22, 230023 Grodna, Belarus

and

G. Schmieder¹

Fachbereich Mathematik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany E-mail: schmieder@mathematik.uni-oldenburg.de

Communicated by Manfred V. Golitschek

Received August 24, 2001; accepted in revised form June 26, 2002

We give conditions for orthonormal systems on the boundary of a plane Jordan domain which are necessary and sufficient for an arbitrary series in terms of this orthonormal system to be the Fourier series of some function in $H^{\infty}(G)$ resp. $E^{P}(G)(1 . Our results contain a classical criterion of Fejér for the boundedness of a holomorphic function in the unit disk. © 2002 Elsevier Science (USA)$

1. INTRODUCTION

Let $H(\mathbb{D})$ denote the class of holomorphic functions in the open unit disk \mathbb{D} . For each $f \in H(\mathbb{D})$ we have a Taylor expansion $f(z) = \sum_{k=0}^{\infty} c_k(f) z^k$ with

$$c_k(f) = \frac{1}{2\pi i} \int_{|\zeta| = r < 1} \frac{f(\zeta)}{\zeta^{k+1}} d\zeta \qquad (k \in \mathbb{N}_0).$$

The following well-known criterion for the boundedness of a function in $H(\mathbb{D})$ goes back to Fejér [5, p. 22; 6, Chaps. III, IV]:

¹To whom correspondence should be addressed.

THEOREM 1. Let $f \in H(\mathbb{D})$. Then $\sup_{z \in \mathbb{D}} |f(z)| < \infty$ if and only if

$$\sup_{n\in\mathbb{N}_0} \max_{|z|=1} \left| \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) c_k(f) z^k \right| < \infty.$$

The aim of this paper is to generalize this results to series in terms of an orthonormal system on the boundary of a Jordan domain (cf. [10, p. 111; 1, p. 108; 6, Chap. IV, Sects. 1,2]).

2. THE MAIN RESULT

Let G be a Jordan domain with rectifiable boundary ∂G . We denote the length of ∂G by $|\partial G|$. A sequence of functions $\varphi_k:\partial G\to\mathbb{C}$ $(k\in\mathbb{N}_0)$ is said to be an orthonormal system on ∂G if

$$\frac{1}{|\partial G|} \int_{\partial G} \varphi_k(\zeta) \overline{\varphi_m(\zeta)} |d\zeta| = \begin{cases} 0 & \text{if } k \neq m \\ 1 & \text{if } k = m \end{cases} (k, m \in \mathbb{N}_0). \tag{1}$$

For such an orthogonal system it follows that:

- (a) φ_k , $\overline{\varphi_k} \in L^2(\partial G)$,
- (b) $\varphi_k(\zeta) \neq 0$ almost everywhere on ∂G $(k \in \mathbb{N}_0)$.

The numbers

$$a_k := \frac{1}{|\partial G|} \int_{\partial G} f(\zeta) \overline{\varphi_k(\zeta)} |d\zeta| \qquad (k \in \mathbb{N}_0)$$
 (2)

are called the *Fourier coefficients* of f, provided that the integrals exist. If all Fourier coefficients are defined, we call the formal series

$$f(z) \leadsto \sum_{k=0}^{\infty} a_k \varphi_k(z)$$
 (3)

the Fourier series of f with respect to the orthonormal system (φ_k) .

Here, it is not necessarily assumed that f itself is integrable, this is only required for $f(\zeta)\varphi_k(\zeta)$ on ∂G (cf. [11, pp. 48 and 185]). If for all $f\in L^p(\partial G)$ the Fourier series exists then $\varphi_k\in L^{\max\{2,p'\}}(\partial G)$, where $\frac{1}{p}+\frac{1}{p'}=1$.

EXAMPLE. Let $G = \mathbb{D}$ and $\varphi_k(z) = z^k$, $a_k = c_k(f)$, $(k \in \mathbb{N}_0)$ (cf. [6, IV, Sects. 1,4]).

In the following, we consider an (infinite) matrix

of lower triangle shape.

THEOREM 2. Let G be a simply connected Jordan domain with rectifiable boundary ∂G and M be a matrix as above with

$$\lim_{n \to \infty} \mu_k^{(n)} = 1 \qquad (k \in \mathbb{N}_0). \tag{4}$$

Let (ϕ_k) be an orthonormal system with functions in $H^{\infty}(G)$ and assume that

$$k_1(M, \Phi) := \sup_{n \in \mathbb{N}_0} \sup_{z \in G} \frac{1}{|\partial G|} \int_{\partial G} \left| \sum_{k=0}^n \mu_k^{(n)} \varphi_k(z) \overline{\varphi_k(\zeta)} \right| |d\zeta| < \infty.$$
 (5)

If $f \in H(G)$ then $\sup_{z \in G} |f(z)| < \infty$ if and only if

$$\sup_{n \in \mathbb{N}_0} \sup_{z \in G} \left| \sum_{k=0}^n \mu_k^{(n)} a_k \varphi_k(z) \right| < \infty. \tag{6}$$

Remark. In the case $G = \mathbb{D}$, we have (same notations as in the example above):

$$\sup_{|z|<1} \frac{1}{2\pi} \int_{|\zeta|=1} \left| \sum_{k=0}^{n} \mu_k^{(n)} \varphi_k(z) \overline{\varphi_k(\zeta)} \right| |d\zeta| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{k=0}^{n} \mu_k^{(n)} e^{ikt} \right| dt.$$

Let $\psi: \mathbb{D} \to G$ be a conformal map. By Γ_r we denote the image of |w| = runder ψ . Then we have $|\Gamma_r| = r \int_{-\pi}^{\pi} |\psi'(re^{it})| dt$. A function $f \in H(G)$ is said to be in the class $E^p(G)$ if

$$\sup_{r<1} \int_{\Gamma_r} |f(z)|^p |dz| < \infty. \tag{7}$$

Let G be a Jordan domain with smooth boundary and

- (i) $s \to z(s)$ be the arc length parametrization of ∂G ,
- (ii) $s \to \theta(s)$ be the angle between the real axis and the tangent line to ∂G at the point z(s),
- (iii) $\delta \to \omega(\theta, \delta)$ be the continuity modulus of the function θ at the incline of the tangent line.

THEOREM 3. Let G be a Jordan domain with smooth boundary satisfying

$$\int_0^1 \frac{\omega(\theta, \delta)}{\delta} d\delta < \infty \tag{8}$$

and assume that $\varphi_k \in H^{\infty}(G)$. Moreover, let the matrix M and the system (φ_k) be as in Theorem 2, but with real coefficients of the matrix M. If $1 and <math>f \in H(G)$ then (7) holds if and only if

$$k_2^p \coloneqq \sup_{n \in \mathbb{N}_0} \sup_{r < 1} \frac{1}{|\Gamma_r|} \int_{\Gamma_r} \left| \sum_{k=0}^n \mu_k^{(n)} a_k \varphi_k(z) \right|^p |dz| < \infty. \tag{9}$$

3. PROOF OF THEOREM 2

We will need two lemmas. Because ∂G has a parametrization as a rectifiable curve each $f \in H^{\infty}(G)$ has a continuous extension on ∂G almost everywhere. If we define f to be 0 in the exceptional boundary points, we have $f \in L^{\infty}(\partial G)$.

LEMMA 1. Let G be a Jordan domain with rectifiable boundary. Let M be a subdiagonal matrix and (φ_k) be an orthonormal system of functions in H^{∞} (G) and assume that (5) holds. Then for each $f \in H^{\infty}(G)$ the inequality

$$\sup_{n \in \mathbb{N}_0} \sup_{z \in G} \left| \left| \sum_{k=0}^n \mu_k^{(n)} a_k \varphi_k(z) \right| \right| \leq k_1(M, \Phi) \sup_{z \in G} |f(z)|$$

is fulfilled.

Proof. A similar result for real orthogonal series has been proved in [4, Theorem [642] (necessity)]. By (2) we obtain on G

$$\sum_{k=0}^{n} \mu_k^{(n)} a_k \varphi_k(z) = \frac{1}{|\partial G|} \int_{\partial G} f(\zeta) \sum_{k=0}^{n} \mu_k^{(n)} \varphi_k(z) \overline{\varphi_k(\zeta)} |d\zeta| \qquad (n \in \mathbb{N}_0). \tag{10}$$

Obviously this implies

$$\begin{split} \sup_{z \in G} & \left| \sum_{k=0}^{n} \mu_{k}^{(n)} a_{k} \varphi_{k}(z) \right| \\ & \leqslant \sup_{\zeta \in G} |f(\zeta)| \sup_{z \in G} \frac{1}{|\partial G|} \int_{\partial G} \left| \sum_{k=0}^{n} \mu_{k}^{(n)} \varphi_{k}(z) \overline{\varphi_{k}(\zeta)} \right| |d\zeta| \qquad (n \in \mathbb{N}_{0}). \end{split}$$

Together with (5) this gives the desired result.

LEMMA 2. Let G, ∂G , M and φ_k as in Theorem 2 and M be a subdiagonal matrix as indicated (but here (5) is not required) such that (4) is fulfilled.

If the formal series $\sum_{k=0}^{\infty} a_k \varphi_k(z)$ with arbitrary complex coefficients a_k fulfills (6) then there exists some $f \in H^{\infty}(G)$ with (2) (i.e. the given series is the Fourier series of f).

Proof. The sequence $s_n(z) := \sum_{k=0}^n \mu_k^{(n)} a_k \varphi_k(z) \in H^{\infty}(G)$ is uniformly bounded in G by (6). Thus, a normal family argument gives some subsequence $(s_{n_j}(z))$ which converges locally uniformly in G to some function $f \in H^{\infty}(G)$.

Let Γ_r be defined as in Section 2. Then we have

$$\lim_{i \to \infty} \max_{z \in \Gamma_r} |f(z) - s_{n_i}(z)| = 0$$

and therefore,

$$\lim_{j \to \infty} \max_{z \in \Gamma_{-}} \left| (f(z) - s_{n_{j}}(z)) \overline{\varphi_{k}(z)} \right| = 0 \qquad (k \in \mathbb{N}_{0})$$

as well as

$$\lim_{j \to \infty} \int_{\Gamma_r} \left| (f(z) - s_{n_j}(z)) \overline{\varphi_k(z)} \right| |dz| = 0 \qquad (r < 1, k \in \mathbb{N}_0). \tag{11}$$

Because $f \in H^{\infty}(G)$ by construction we obtain that

$$(f(z) - s_n(z))\varphi_k(z) \in H^{\infty}(G) \subset E^1(G) \qquad (n, k \in \mathbb{N}_0).$$

A well-known result (cf. [6, Chap. IV; 3, Chap. X, Sect. 5(2)]) shows that

$$\lim_{r \to 1-0} \int_{\Gamma_r} |(f(z) - s_n(z))\varphi_k(z)||dz|$$

$$= \int_{\partial G} |(f(\zeta) - s_n(\zeta))\varphi_k(\zeta)||d\zeta| \qquad (n, k \in \mathbb{N}_0),$$

and thus

$$\lim_{r \to 1-0} \int_{\Gamma_r} \left| (f(z) - s_n(z)) \overline{\varphi_k(z)} \right| |dz|$$

$$= \int_{\partial G} \left| (f(\zeta) - s_n(\zeta)) \overline{\varphi_k(\zeta)} \right| |d\zeta| \qquad (n, k \in \mathbb{N}_0).$$

This means that for all $\varepsilon > 0$ there exists some $r_0 = r_0(k, \varepsilon) < 1$ such that for every $r \in [r_0, 1[$

$$\begin{split} &\int_{\partial G} \left| (f(\zeta) - s_n(\zeta)) \overline{\varphi_k(\zeta)} \right| |d\zeta| \\ &\leqslant \int_{\Gamma_r} \left| (f(z) - s_n(z)) \overline{\varphi_k(z)} \right| |dz| + \varepsilon \qquad (n, k \in \mathbb{N}_0). \end{split}$$

This shows

$$\lim_{j \to \infty} \left| \int_{\partial G} (f(\zeta) - s_{n_j}(\zeta)) \overline{\varphi_k(\zeta)} |d\zeta| \right| \leq \lim_{j \to \infty} \int_{\Gamma_r} \left| (f(z) - s_{n_j}(z)) \overline{\varphi_k(z)} \right| |dz| + \varepsilon$$

$$= \varepsilon \text{ by (11)} \qquad (k \in \mathbb{N}_0).$$

Since ε is an arbitrary positive number we obtain

$$\lim_{j\to\infty}\int_{\partial G}(f(\zeta)-s_{n_j}(\zeta))\overline{\varphi_k(\zeta)}|d\zeta|=0 \qquad (k\in\mathbb{N}_0).$$

Now (1) shows that

$$\lim_{j \to \infty} \mu_k^{(n_j)} a_k = \frac{1}{|\partial G|} \int_{\partial G} f(\zeta) \overline{\varphi_k(\zeta)} |d\zeta| \qquad (k \in \mathbb{N}_0).$$

Assuming $j \to \infty$, we get the desired equation (2) from (4).

4. PROOF OF THEOREM 3

We will need two lemmas. Because ∂G has a parametrization as a rectifiable curve each $f \in E^p(G)$ has continuous extension on ∂G almost everywhere. If we define f to be 0 in the exceptional boundary points, we have $f \in L^p(\partial G)$.

Lemma 3. Let G, ∂G , M, Φ as in Lemma 1, but with real coefficients of the matrix M. Then for each $f \in E^p(G)$ the inequality

$$\sup_{n\in\mathbb{N}_0}\left|\left|\sum_{k=0}^n \mu_k^{(n)} a_k \varphi_k(z)\right|\right|_{L^p(\partial G)} \leqslant k_1(M, \Phi)||f||_{L^p(\partial G)}.$$

Proof. A similar result for real orthogonal series has been proved in [4, Theorem [641] (necessity)].

Equation (10) implies $(1 = \frac{1}{p} + \frac{1}{p'})$ almost everywhere on ∂G

$$\begin{split} &\left|\sum_{k=0}^{n} \mu_{k}^{(n)} a_{k} \varphi_{k}(z)\right| \\ &\leqslant \frac{1}{|\partial G|} \int_{\partial G} |f(\zeta)|^{p} \left|\sum_{k=0}^{n} \mu_{k}^{(n)} \varphi_{k}(z) \overline{\varphi_{k}(\zeta)}\right|^{1/p+1/p'} |d\zeta| \qquad (n \in \mathbb{N}_{0}). \end{split}$$

Applying Hölder's inequality and by (5) we see

$$\left|\sum_{k=0}^{n} \mu_k^{(n)} a_k \varphi_k(z)\right| \leq \left(\frac{1}{|\partial G|} \int_{\partial G} |f(\zeta)|^p \left|\sum_{k=0}^{n} \mu_k^{(n)} \varphi_k(z) \overline{\varphi_k(\zeta)}\right| |d\zeta|\right)^{1/p} k_1^{1/p'}(M, \Phi).$$

For $1 we may write <math>(n \in \mathbb{N}_0)$

$$\left|\sum_{k=0}^{n} \mu_k^{(n)} a_k \varphi_k(z)\right|^p \leqslant k_1^{p-1}(M, \Phi) \frac{1}{|\partial G|} \int_{\partial G} |f(\zeta)|^p \left|\sum_{k=0}^{n} \mu_k^{(n)} \varphi_k(z) \overline{\varphi_k(\zeta)}\right| |d\zeta|.$$

Because of $|w| = |\bar{w}|$ Fubini's Theorem leads to

$$\begin{split} &\int_{\partial G} \left| \sum_{k=0}^{n} \mu_{k}^{(n)} a_{k} \varphi_{k}(z) \right|^{p} |dz| \\ &\leqslant k_{1}^{p-1}(M, \Phi) \frac{1}{|\partial G|} \int_{\partial G} |f(\zeta)|^{p} \left(\int_{\partial G} \left| \sum_{k=0}^{n} \overline{\mu_{k}^{(n)}} \varphi_{k}(z) \overline{\varphi_{k}(\zeta)} \right| |dz| \right) |d\zeta| \\ &\qquad (n \in \mathbb{N}_{0}). \end{split}$$

From (5) we obtain

$$\int_{\partial G} \left| \sum_{k=0}^{n} \mu_k^{(n)} a_k \varphi_k(z) \right|^p |dz| \leq k_1^p(M, \Phi) \int_{\partial G} |f(\zeta)|^p |d\zeta| \qquad (n \in \mathbb{N}_0). \quad \blacksquare$$

Lemma 4. Let G, ∂G , M and φ_k as in Theorem 3 and M be a subdiagonal matrix as indicated (but here (5) is not required) such that (4) is fulfilled.

If the formal series $\sum_{k=0}^{\infty} a_k \varphi_k(z)$ with arbitrary complex coefficients a_k fulfills (9) then there exists some $f \in E^p(G)$ for some 1 with (2) (i.e. the given series is the Fourier Series of <math>f).

Proof.

Step 1. Equation (9) implies

$$\sup_{n \in \mathbb{N}_0} \frac{1}{|\partial G|} \int_{\partial G} |s_n(\zeta)|^p |d\zeta| < \infty. \tag{12}$$

From (8) it follows that there exist constants k_3 , k_4 such that [7, p. 48]

$$0 < k_3 \le |\psi'(w)| \le k_4 < \infty \qquad (|w| = 1).$$
 (13)

By (12), (13) and $\sup_{n\in\mathbb{N}_0} \int_{-\pi}^{\pi} |s_n(\psi(e^{it}))|^p dt < \infty$ we obtain (see [2, 12.3.10(2)]) the existence of some $g\in L^p(\mathbb{T})$ and some subsequence (s_{n_j}) of (s_n) such that for all $u\in L^{p'}(\mathbb{T})$

$$\lim_{j \to \infty} \int_{-\pi}^{\pi} u(t) s_{n_j}(\psi(e^{it})) dt = \int_{-\pi}^{\pi} u(t) g(t) dt.$$
 (14)

Step 2. From (14) and the Banach–Saks–Theorem (cf. [8, p. 90]) we can find a subsequence $(s_{n_{i_r}})$ of (s_{n_i}) such that

$$\lim_{m \to \infty} \int_{-\pi}^{\pi} \left| g(t) - \frac{1}{m+1} \sum_{v=0}^{m} s_{n_{j_v}}(\psi(e^{it})) \right|^{p} dt = 0.$$

By (13) we get

$$\lim_{m \to \infty} \int_{-\pi}^{\pi} \left| g(t) \psi'(e^{it}) e^{it} i - \frac{\psi'(e^{it}) e^{it} i}{m+1} \sum_{v=0}^{m} s_{n_{j_v}}(\psi(e^{it})) \right|^p dt = 0.$$
 (15)

Equation (9) implies that $s_n \in E^p(G)$ for all $n \in \mathbb{N}_0$ and by Cauchy's Integral Formula we see

$$\frac{1}{m+1}\sum_{v=0}^{m} s_{n_{j_v}}(z) = \frac{1}{2\pi(m+1)} \int_{-\pi}^{\pi} \frac{\psi'(e^{it})e^{it}}{\psi(e^{it}) - z} \sum_{v=0}^{m} s_{n_{j_v}}(\psi(e^{it})) dt \qquad (z \in G).$$

The integral

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\psi'(e^{it})e^{it}}{\psi(e^{it}) - z} g(t) dt$$

defines a holomorphic function $f:G\to\mathbb{C}$ as well as a holomorphic function $h:\bar{\mathbb{C}}\backslash\bar{G}\to\mathbb{C}$ with $h(\infty)=0$.

Now (15) implies (cf. [10, p. 107f])

$$\lim_{m \to \infty} \max_{z \in \Gamma_r} \left| f(z) - \frac{1}{m+1} \sum_{v=0}^m s_{n_{j_v}}(z) \right| = 0 \qquad (r < 1).$$
 (16)

Minkowski's inequality gives by (9)

$$\left(\frac{1}{|\Gamma_r|} \int_{\Gamma_r} \left| \frac{1}{m+1} \sum_{\nu=0}^m s_{n_{j_{\nu}}}(z) \right|^p |dz| \right)^{1/p} \leqslant k_2 \qquad (r < 1, m \in \mathbb{N}_0). \tag{17}$$

Using (16) and (17) we obtain

$$\sup_{r<1} \left(\frac{1}{|\Gamma_r|} \int_{\Gamma_r} |f(z)|^p |dz| \right)^{1/p} \leqslant k_2$$

and this means that $f \in E^p(G)$.

Step 3. This step is analogously to the proof of Lemma 2.

Equation (9) gives $\varphi_k \in E^p(G) \subset E^1(G)$ for all $k \in \mathbb{N}_0$. Taking in account (16) this shows

$$\lim_{m \to \infty} \int_{\Gamma_r} \left| \left(f(z) - \frac{1}{m+1} \sum_{v=0}^m s_{n_{j_v}}(z) \right) \overline{\varphi_k(z)} \right| |dz| = 0 \qquad (r < 1, k \in \mathbb{N}_0).$$
 (18)

At the end of the previous step, we obtained $f \in E^p(G) \subset E^1(G)$. Thus by (17) we see that

$$\left(f(z) - \frac{1}{m+1} \sum_{v=0}^{m} s_{n_{j_v}}(z)\right) \varphi_k(z) \in E^p(G) \subset E^1(G) \qquad (m, k \in \mathbb{N}_0).$$

A well-known result [6, Chap. IV; 3, Chap. X, Sect. 5(2)] gives

$$\begin{split} &\lim_{r\to 1-0} \int_{\Gamma_r} \left| \left(f(z) - \frac{1}{m+1} \sum_{v=0}^m s_{n_{j_v}}(z) \right) \varphi_k(z) \right| |dz| \\ &= \int_{\partial G} \left| \left(f(\zeta) - \frac{1}{m+1} \sum_{v=0}^m s_{n_{j_v}}(\zeta) \right) \varphi_k(\zeta) \right| |d\zeta| \qquad (m, k \in \mathbb{N}_0). \end{split}$$

Obviously this equation remains true if we replace φ_k by $\overline{\varphi_k}$. This means that for all $\varepsilon > 0$ there exists some $r_0 = r_0(k, \varepsilon) < 1$ such that for every

 $r \in [r_0, 1[$

$$\begin{split} &\int_{\partial G} \left| \left(f(\zeta) - \frac{1}{m+1} \sum_{v=0}^{m} s_{n_{j_{v}}}(\zeta) \right) \overline{\varphi_{k}(\zeta)} \right| |d\zeta| \\ &\leqslant \int_{\Gamma_{r}} \left| \left(f(z) - \frac{1}{m+1} \sum_{v=0}^{m} s_{n_{j_{v}}}(z) \right) \overline{\varphi_{k}(z)} \right| |dz| + \varepsilon \qquad (m, k \in \mathbb{N}_{0}). \end{split}$$

This shows

$$\begin{split} &\lim_{m\to\infty}\left|\int_{\partial G}\left(f(\zeta)-\frac{1}{m+1}\sum_{v=0}^{m}\,s_{n_{j_{v}}}(\zeta)\right)\overline{\varphi_{k}(\zeta)}|d\zeta|\right| \\ &\leqslant \lim_{m\to\infty}\left|\int_{\Gamma_{r}}\left(f(z)-\frac{1}{m+1}\sum_{v=0}^{m}\,s_{n_{j_{v}}}(z)\right)\overline{\varphi_{k}(z)}\right||dz|+\varepsilon\overset{(18)}{=}\varepsilon \qquad (k\in\mathbb{N}_{0}). \end{split}$$

Because $\varepsilon > 0$ is chosen arbitrarily we obtain

$$\lim_{m\to\infty}\int_{\partial G}\left(f(\zeta)-\frac{1}{m+1}\sum_{v=0}^{m}s_{n_{j_{v}}}(\zeta)\right)\overline{\varphi_{k}(\zeta)}|d\zeta|=0 \qquad (k\in\mathbb{N}_{0}).$$

Since (φ_k) is an orthonormal system, we see that

$$\frac{1}{|\partial G|} \int_{\partial G} f(\zeta) \overline{\varphi_k(\zeta)} |d\zeta| = a_k \lim_{m \to \infty} \frac{1}{m+1} \sum_{v=0}^m \mu_k^{(n_{j_v})} \qquad (k \in \mathbb{N}_0).$$

Now (4) shows the desired equation (2) and Lemma 4 is proved.

5. PROBLEM

It would be interesting to replace (1) by

$$\frac{1}{|\partial G|} \int_{\partial G} n(\zeta) p_k(\zeta) \overline{p_m(\zeta)} |d\zeta| = \begin{cases} 0 & \text{if } k \neq m, \\ 1 & \text{if } k = m, \end{cases}$$

where $n(\zeta)$ is some weight function and the p_m are suitable polynomials as studies by Szegő (cf. [9, p. 364]).

ACKNOWLEDGMENTS

This article was written during the visit of Bruj at the University of Oldenburg in summer 2001 supported by DAAD (Deutscher Akademischer Austauschdienst).

REFERENCES

- S. Bergman, "The Kernel Function and Conformal Mapping," 2nd ed., American Math. Soc., Providence, RI, 1970.
- R. E. Edwards, "Fourier Series, A Modern Introduction II," Springer, New York/ Heidelberg/Berlin, 1979.
- 3. Deleted in proof.
- 4. S. Kaczmarz and H. Steinhaus, "Theorie der Orthogonalreihen," Warsaw (1935), Reprinted by Chelsea, New York, 1951. [In German]
- E. Landau and D. Gaier, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie," 3rd ed., Springer-Verlag, Berlin/Heidelberg/New York/London/Paris/ Tokyo, 1986.
- N. A. Lebedev and V. I. Smirnow, "Functions of a Complex Variable: Constructive Theory," The MIT Press, Cambridge, MA, 1968.
- C. Pommerenke, "Boundary Behaviour of Conformal Maps," Springer-Verlag, Berlin/ Heidelberg/New York/London/Paris/Tokyo, 1992.
- 8. F. Riesz and B. Sz.-Nagy, "Vorlesungen über Funktionalanalysis," 4th ed., Verlag Harri Deutsch, Thun-Frankfurt/M., 1982. [In German]
- 9. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, 1975.
- J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," 5th ed., Amer. Math. Soc., Providence, RI, 1969.
- A. Zygmund, "Trigonometric Series I," Cambridge Univ. Press, Cambridge/London/New York/Melbourne, 1977.