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We give conditions for orthonormal systems on the boundary of a plane Jordan
domain which are necessary and sufficient for an arbitrary series in terms of this
orthonormal system to be the Fourier series of some function in H*(G) resp.
EP(G)(1<p<oc). Our results contain a classical criterion of Fejér for the
boundedness of a holomorphic function in the unit disk. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let H(D) denote the class of holomorphic functions in the open unit disk
D. For each /' € H(D) we have a Taylor expansion f(z) = > ;2 cx(f)z"
with

ol =g [ Ga dwen)

T 2mi

The following well-known criterion for the boundedness of a function in
H(D) goes back to Fejér [5, p. 22; 6, Chaps. 111, 1V]:
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THEOREM 1. Let f € H(D). Then sup..p | f(z)| <oo if and only if

i(l —n_lr_ 1>Ck(f)2k

k=0

Sup max
neNy ‘lel

<0o0.

The aim of this paper is to generalize this results to series in terms of an
orthonormal system on the boundary of a Jordan domain (cf. [10, p. 111; 1,
p. 108; 6, Chap. IV, Sects. 1,2]).

2. THE MAIN RESULT

Let G be a Jordan domain with rectifiable boundary 0G. We denote the
length of OG by |0G|. A sequence of functions ¢, : G — C (k € N) is said
to be an orthonormal system on 9G if

(k,meNg). (1)

1 0 if k#
[0G| /;)G (O en(0)ld| = { if k#m

1 ifk=m

For such an orthogonal system it follows that:

(a) Pks (p_k € Lz(aG)v
(b) ¢, (0)#0 almost everywhere on G (k € Np).

The numbers

1
o= g /6 SO k) 2)

are called the Fourier coefficients of f, provided that the integrals exist. If all
Fourier coefficients are defined, we call the formal series

FO Y a2 )
k=0

the Fourier series of f with respect to the orthonormal system (¢y).

Here, it is not necessarily assumed that f itself is integrable, this is only
required for £({) o, ({) on G (cf. [11, pp. 48 and 185)). If for all ' € LP(0G)
the Fourier series exists then ¢, € L™} (9G), where [l) + [% =1.

ExamPLE. Let G=D and ¢, (z) = z*, ar = cx(f), (k € Ny) (cf. [6, 1V,
Sects. 1.4]).
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In the following, we consider an (infinite) matrix

A0 0 0

w w00

I w om0
=)= M(()3) #(13) Més) M§3> 0

of lower triangle shape.

THEOREM 2. Let G be a simply connected Jordan domain with rectifiable
boundary 0G and M be a matrix as above with

lim @ =1 (keNy). (4)

n—oo

Let (@) be an orthonormal system with functions in H*(G) and assume that

ki(M,®) = sup sup 1 op(2) o) ldel <oo.  (5)
neNo ze6 10G] JoG|i=g
If f € H(G) then sup..q | f(z)| <oo if and only if
sup sup Z "y (2)] < oo (6)
neNy z€G |2

Remark. 1In the case G = D), we have (same notations as in the example

above):
|dC| / § : lkr
-

Let y : D — G be a conformal map. By I', we denote the image of |w| =r
under . Then we have [I',| =r [ [}/ (re")] dt.
A function f € H(G) is said to be in the class E?(G) if

Zuk o (2) o (0)

\|<12ﬂ lt=1| %=

sup / /()P lde] < oo. (7)

r<l
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Let G be a Jordan domain with smooth boundary and
(i) s — z(s) be the arc length parametrization of JG,

(ii) s — 0(s) be the angle between the real axis and the tangent line to
0G at the point z(s),

(i) 0 — w(0,0) be the continuity modulus of the function 6 at the
incline of the tangent line.

THEOREM 3. Let G be a Jordan domain with smooth boundary satisfying

/01 ”(95’5) dd <o (8)

and assume that ¢, € H*(G). Moreover, let the matrix M and the system
(o)) be as in Theorem 2, but with real coefficients of the matrix M. If 1 <p
<oo and f € H(G) then (7) holds if and only if

k5 = sup sup |dz|<oo. 9)

61190
neNy r<l u‘| " k

3. PROOF OF THEOREM 2

We will need two lemmas. Because 0G has a parametrization as a
rectifiable curve each ' € H*(G) has a continuous extension on JG almost
everywhere. If we define f to be 0 in the exceptional boundary points, we
have f € L*(9G).

LEmMA 1. Let G be a Jordan domain with rectifiable boundary. Let M be
a subdiagonal matrix and (¢;) be an orthonormal system of functions in H>
(G) and assume that (5) holds. Then for each f € H®(G) the inequality

<k (M, D) sup |f(2)]

Z Hk ak(Pk( )

k=0

sup sup
neNy zeG

is fulfilled.

Proof. A similar result for real orthogonal series has been proved in
[4, Theorem [642] (necessity)]. By (2) we obtain on G

~ o) ()
> o) =5 e | e Zukq) (Ol (e (10)
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Obviously this implies

sup
zeG

Z /Jk ak(/’k( )

k=0

Do (o) ld| (€ No).

su su
uplf(Olsup (56 /

Together with (5) this gives the desired result. 1

LEMMA 2. Let G, 0G, M and ¢, as in Theorem 2 and M be a subdiagonal
matrix as indicated (but here (5) is not required) such that (4) is fulfilled.

If the formal series > ., arpi(z) with arbitrary complex coefficients ay
Sulfills (6) then there exists some f € H*®(G) with (2) (i.e. the given series is
the Fourier series of f).

Proof. The sequence s,(z) =Y ;_, ,u,((mak(pk(z) € H*(G) is uniformly
bounded in G by (6). Thus, a normal family argument gives some
subsequence (s, (z)) which converges locally uniformly in G to some
function f € H*(G).

Let I', be defined as in Section 2. Then we have

lim max | f(z) — sy, (z)} =0
Jj—oo  zel, ’

and therefore,

lim max \(f(z) = s (2))o(2)| =0 (k€ No)
j—oo zel,
as well as
lim /‘ — 5, (2)) (2 ‘|dz\f0 (r<lkeNy). (1)
J—00

Because ' € H*(G) by construction we obtain that
(f(2) = ()i (2) € HX(G) C ENG)  (mk € Ny).

A well-known result (cf. [6, Chap. IV; 3, Chap. X, Sect. 5(2)]) shows that

lim /| ) — 50(2)) 0 (2)]|dz]

r—1-0

= | Q) =s(O)or(OlldC]  (n,k € No),

oG
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and thus

s, ||t s

/OG‘ ) —su(0) i (¢ ‘IdCI (n,k € Ny).

This means that for all ¢ > 0 there exists some ry = ro(k, ¢) <1 such that for
every r € [ro, 1]

[ 110 = )2
oG

/‘ ) — sn(2) i (z ‘|d2|+8 (n,k € Np).
This shows
i | [ (70 -5, (0o @l < fim 10 s, e [l +-
J—00 oG jﬂoo

=¢ by (11) (k € Np).

Since ¢ is an arbitrary positive number we obtain

lim (f(©) = s (D) (D]dl] =0 (k € No).

J=0 Jaag

Now (1) shows that

tim i 0 = el / Qe @ld (k€ No).

Assuming j — oo, we get the desired equation (2) from (4). 1

4. PROOF OF THEOREM 3

We will need two lemmas. Because 0G has a parametrization as a
rectifiable curve each f € EP(G) has continuous extension on JG almost
everywhere. If we define f to be 0 in the exceptional boundary points, we
have /" € [?(0G).
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LEMMA 3. Let G, 0G, M, ® as in Lemma 1, but with real coefficients of
the matrix M. Then for each f € EP(G) the inequality

sup
neNy

<ki(M,®)] f]
L2(9G)

Z " ak(/’k( )

k=0

L(0G)-

Proof. A similar result for real orthogonal series has been proved in [4,
Theorem [641] (necessity)].
L L

Equation (10) implies (1 =+ +-.) almost everywhere on 0G

Ty
n (n)
Z 1y arpr(2)
k=0
1 n 1/p+1/p
So6 P> w0200 ldc|  (neNy).
0G| i

Applying Holder’s inequality and by (5) we see

i o/
<|\mA W i ou(2)0 (0)
) <8G| oG ‘ Z k k k
For 1 <p<oo we may write (n € Ny)
n (n)
Z:“k akpy(z)
k=0

Because of |w| = |w| Fubini’s Theorem leads to

/d Z ,uk ak(Pk

k=0

. 1 )
<M’<MwMWGLJf@n(/'

(I’l c No)

1/p
a2 ao k" (M, ).

1

<k”’lM<I>
M- 2) 567 Je

r )|ld¢].

Z#k Pi(z <PA

(n)

IdZI> |d{]

From (5) we obtain

/d Z 1 apey (2

k=0
LeEmMA 4. Let G, 0G, M and ¢, as in Theorem 3 and M be a subdiagonal
matrix as indicated (but here (5) is not required) such that (4) is fulfilled.

I&KHML®AJﬂMWm (neNo).



MATRIX MEAN SERIES 253

If the formal series > -, axp;(z) with arbitrary complex coefficients ay
Sulfills (9) then there exists some f € EP(G) for some 1 <p<oo with (2) (i.e.
the given series is the Fourier Series of f).

Proof.
Step 1. Equation (9) implies

: /
sup —— s (O |de] < o0. 12
nef\If?) |8G| oG | ( )| | | ( )

From (8) it follows that there exist constants ks, k4 such that [7, p. 48]
0<ks<|Y'(w)|<kg<oo (Iw] =1). (13)

By (12), (13) and sup,c, [, [sa(¥ (")) di<oo we obtain (see
[2, 12.3.10(2)]) the existence of some g € L/(T) and some subsequence (sy,)
of (s,) such that for all u € L7 (T)

s n

lim u(t)sy, (Y(e")) dt = /7 u(t)g(t) dr. (14)

J—o —n T
Step 2. From (14) and the Banach—Saks—Theorem (cf. [8, p. 90]) we can
find a subsequence (s, ) of (s,) such that

»
dt = 0.

s 1 m

lim
m—oo |

9(7) S, (W (e"))

_m+1 —

By (13) we get

p P

e P

V=l

lim
m—oo [

dr=0. (15

Equation (9) implies that s, € EP(G) for all n € Ny and by Cauchy’s Integral
Formula we see

m 1 T lp/(eit)eit m i
;sn,‘ = (mH)L e 3 ‘;sn,v(w(e Ndt  (z€G).

The integral

1 T lpl(e”)eit
2 ) e =290

defines a holomorphic function f': G — C as well as a holomorphic function
h:C\G — C with h(o0) =
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Now (15) implies (cf. [10, p. 107f])

lim max
m—oo zel,

Zm:snj‘ ' (r<l). (16)
v=0

Minkowski’s inequality gives by (9)

(7

Using (16) and (17) we obtain

1 1/p
sup(— / |f<z>|f’|dz|) <k
r<l |F1| r,

and this means that f € E?(G).

Step 3. This step is analogously to the proof of Lemma 2.

Equation (9) gives ¢, € E*(G) C E'(G) for all k € Ny. Taking in account
(16) this shows

|- S o)

At the end of the previous step, we obtained f € EP(G) C E'(G). Thus by
(17) we see that

/p
dZ|> <k, (V<1,WZGNO). (17)

lim
m—oo F,

Olldzl =0 (r<1,k € Np). (18)

( Z > z) € EP(G) C EN(G)  (m,k €Ny).

=0

A well-known result [6, Chap. IV; 3, Chap. X, Sect. 5(2)] gives

rli,?lo Fr‘ <f(z) - ML—H 2 Snj, (Z)> ?i(2)

' 1 m
-/ ( 107 3 sn,‘,<c>> 2(0)

Obviously this equation remains true if we replace ¢, by @,. This means
that for all ¢ > 0 there exists some ry = ro(k,&) <1 such that for every

|dz]

|d(] (m, k € Np).
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2

e

<f<¢>—m#+1 ) n,-\,<z>>m

V=0
This shows

1 m
/. (f(é) T sn,.‘,@))(pk(mdg

[ (o S me)ar

0. (2)||dz| + ¢ (m, k € Np).

lim

nm—o0

< lim Ddz) +e e (ke Ny).

m—o0

Because ¢ > 0 is chosen arbitrarily we obtain

lim ( Z ) Old =0 (keNy).
m—oQ BG

v=0

Since (¢;) is an orthonormal system, we see that

\aG|/ SOeOldl] = ae im 2= Z (k € No).

=0

Now (4) shows the desired equation (2) and Lemma 4 is proved. 1

5. PROBLEM

It would be interesting to replace (1) by

0 if k#m,
Old
|8G|/ m(©)ldt] = {1 if k=m,

where n({) is some weight function and the p,, are suitable polynomials as
studies by Szegé (cf. [9, p. 364]).
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